Cement & Super Plasticizers Compatibility
With the increasing number of types and brands of cement, as well as variants of construction chemicals, there are issues that arise related to the interactions between these two essential ingredients of good quality concrete.
Modern concretes almost always possess additives, particularly chemical admixtures to enhance the properties of fresh and hardened concrete. Then, there are others chemicals for viscosity modification, shrinkage reduction, corrosion inhibition and/or alkali-silica reaction mitigation. Most users apply a trial-and-error approach to the use of chemical admixtures, often resulting in an unfortunate negative experience and/or low cost-effectiveness, which perhaps results in a bias against admixtures in general.
At low dosages, all fractions of the polymer are adsorbed whereas beyond a certain dosage, only fractions of super plasticizer with larger molecular weights will be preferentially adsorbed. This can lead to differences in the effectiveness of different products since they could have fractions of varying molecular weights and larger molecular fractions of varying effectiveness. Also, the response of the SPs to the variation in chemical composition of cement depends on the type of superplasticizer.
Admixture type and dosage: For all SPs, the rate of increase in the fluidity of the paste or workability of concrete decreases as the dosage increases until there is no significant increase in the fluidity (beyond a dosage often denoted as the saturation dosage). Further increase in the superplasticizer dosage could lead to segregation and set retardation rather than assist in increasing the workability of the concrete, not to mention the cost implications. It is also well known that almost all SPs increase the length of the dormant period and slow down the hydration process.
Time of addition of the SP: The amount of admixture adsorbed reduces when cement hydrates; in other words, adsorption is greater on unhydrated compounds compared to the hydrated phases. Delayed addition has shown to result in lesser participation of the polymer in the formation of the organo-mineral phase.
India Specific Scenario
In India, there is an increasing tendency to use synthetic gypsum instead of natural gypsum during cement production. However, the rate of solubility of synthetic gypsum and its effects on the initial adsorption and consequent fluidity are not clear. Moreover, synthetic gypsum could increase the setting time from 3 to 10 hours. Such retardation can be eliminated if the phosphogypsum is neutralized with lime, and content of water soluble phosphates and fluorine is reduced to below 0.02%. In addition, the use of cements high in alkali causes workability problems in concrete without any admixtures while, cements low in alkali result in poor rheology of the concrete in concretes using sulphonate based admixtures.
Added to the cement-superplasticizer interactions, the effect of an “inert” component on the workability could be significant (for example, when there is some interaction between a superplasticizer and fine sand particles leading to a high loss of workability during transportation), and early-age cracking increases even when the concrete is of good quality (which can occur when fillers absorb the bleed water, causing higher plastic shrinkage, or when a high paste content causes excessive thermal shrinkage). Another complication is that the type of mixing can also affect SP effectiveness.
The placing of concrete at high ambient temperatures adds a new dimension to the problem of incompatibility. Low temperature has been reported to decrease fluidity. Conversely, increase in the temperature causes higher rate of slump loss. The influence of temperature on cement-SP interaction is also closely associated with the cement composition.
In India, cement standards are not very stringent, and enable manufacturers to adjust their product in many different ways. For example, while the minimum fineness is specified for different grades of cement, there is no control on the maximum. Thus, a manufacturer could use the same composition and grind cement to different finenesses, and still have the same end product. Such a situation might lead to variations in the super plasticizer demand.
Additionally, the requirements of chemical composition of the cement are also not stringent, and large ranges are acceptable. This could result in significant variability in the cement properties, even from the same manufacturing plant. From the viewpoint of use of water reducers, there is insufficient knowledge among users regarding the limitations of different types of chemicals.
Studies on cement-water reducer interactions in India have been limited to the workability evaluation of concretes containing these chemicals, in specific regions where rapid slump loss has been observed in concreting operations. There have not been any investigations to understand the physico-chemical nature of this interaction. Thus, the results from these studies are not broad-based.
There is a distinct need for the characterization of Indian cement and admixture properties, in order to understand the nature of their interactions. Moreover, the wide range of cements used, varying transportation durations and climatic conditions necessitate more fundamental studies that could explain the mechanisms of interaction and help establish methods for identifying incompatibility in practical situations.
In addition, simple methodologies are required to be able to identify systems prone to undesirable effects due to such interactions and to further understand the fundamental nature of admixture behaviour in cement-based systems.
Prof. Ravindra Gettu
Prof. Manu Santhanam
Department of Civil Engineering, Indian Institute of Technology Madras, Chennai
Department of Civil Engineering, Amrita Vishwa Vidyapeetham, Coimbatore
Tags : Technology